

Monte Carlo Simulation for Generation Adequacy Simulations

Dr.-Ing. Markus Pöller/DIgSILENT GmbH

PowerFactory User's Group Meeting 2011 and DIgSILENT Pacific 10th Anniversery, Melbourne February 24-26, 2011

Generation Adequacy

- The Generation Adequacy function of PowerFactory allows assessing the reliability of supply of a system.
- · Typical reliability indices:
 - LOLP: Loss of load probability
 - LOLE: Loss of load expectancy
 - ENS (or END): Energy not supplied (or Energy not delivered)
- Generation Adequacy Assessment allows quantifying the required installed capacity of a system.
- The PowerFactory function "Generation Adequacy" makes special consideration of renewable energy sources and makes special provision for assessing the capacity credit of renewable generation.

Modelling of Dispatchable Generation

- · Unplanned outages:
 - Multi-state Marcov-Model per generating unit.
 - Typically: two state models are used (unplanned outage rate)
- · Planned outages:
 - Definition of a deterministic maintenance schedule.
 - Alternatively: Modelling of planned outages like unplanned outages

PowerFactory User's Group Meeting 2011 and DIgSILENT Pacific 10th Anniversery, Melbourne February 24-26, 2011

Modelling of Wind Generation

- Typically, wind farms are modelled rather than individual wind generators:
 - Rated power per individual wind generator
 - Number **n** of wind generators in wind farms
- Unplanned outages:
 - Two-state Marcov Model
 - Automatic consideration of the number **n** of wind generators
- Wind variation:
 - Probabilistic Approach: Weibull function
 - Time series approach

), in

Results

- Reliability Indices (LOLP, LOLE)
- Cumulative probability curves:
 - Total available capacity
 - Available capacity of dispatchable generation
 - Available capacity of non-dispatchable generation
 - Reserve (Total, dipatchable, non-dispatchable)
 - Total demand (load duration curve)
 - Demand supplied
 - Demand not supplied
 - Residual demand (Demand non-dispatchable generation)

Definition of Capacity Credit based on Generation Availability

Capacity Credit of variable generation can be defined on basis of the available generation at a specified confidence level (or loss of load probability level)

- · Advantages:
 - Clear criterion, easy to understand.
 - Low data requirements
- · Disadvantages:
 - Ignores correlation between load and generation.
 - Consideration of maintenance plans difficult

Definition of Capacity Credit based on Available Reserve

Capacity Credit of variable generation can be defined on basis of the available Reserve at a specified confidence level (or loss of load probability level)

- Advantages:
 - Clear criterion, easy to understand.
 - Correlation of load and maintenance plans can be considered easily.
 - Seasonal correlation between wind generation and load can be considered easily
- · Disadvantages:
 - More data required (especially load data)

Generation Adequacy Function in PowerFactory

- The new PowerFactory function "Generation Adequacy" provides probabilistic models for generator outages and wind speed variations.
- Studies about the reliability of supply of a system are supported by the built-in Monte Carlo Analysis (non time sequential).
- Studies about the capacity credit of renewable generation directly supported by the new Monte Carlo Analysis function.
- DPL functions give easy access to the new probabilistic models and allow for additional functionality related to the variable nature of renewable generation, such as:
 - Probabilistic load flow
 - Time series studies relating to load variations, ramp rates etc.

PowerFactory User's Group Meeting 2011 and DIgSILENT Pacific 10th Anniversery, Melbourne February 24-26, 2011

Thank You

Markus Pöller mpoeller@digsilent.de

DIgSILENT GmbH Heinrich-Hertz-Str. 9 72810 Gomaringen www.digsilent.de